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1. Abstract 
 
Our objective was to study discrimination capabilities of feature based characterization and 
classification techniques using standard survey data acquired by others at the UXO Standardized 
Test Sites in APG and YPG.   
 
The fundamental issues investigated included the model used during characterization and the 
impact that classifier selection has on classification performance.  After re-leveling and lagging 
the EM61 cart data, we inverted anomaly data for each data type using dipole, ellipsoidal, 
empirical, loop fit, joint frequency-time domain, and singularity expansion models.  We then 
classified the resulting feature vectors with SVM, RVM, GLRT, and KNN statistical classifiers.   
 
We evaluated classification performance using two metrics derived from ROC curves; namely, 
(i) the total area under the curve and (ii) the probability of false alarms at 0.95 probability of 
detection.  We selected five data sets to include in this study based on data quality, type, signal-
to-noise, and availability at appropriate intermediate processing stages.  The datasets included 
time-domain EM61 (man-towed single sensor cart and vehicle-towed array), time-domain EM63, 
frequency-domain GEM-3, and magnetic data. 
 
None of the classifiers or sensor/model combinations performed extremely well when the targets 
of interest (TOI) included 20mm- through 155mm-projectiles.  Classification performance 
measures, defined here using area under the curve, were 0.8 for the best case(s).  Additionallyh, 
all classifiers or sensor/model combinations produced multiple false negatives.  False alarm 
rates, at a detection performance of 0.95, were as high as 0.95. 
  
Simplifying the problem by artificially limiting the UXO by size or by analyzing data acquired in 
a cued deployment did improve classification performances.  Segmenting the UXO by size 
classes improved classification in direct proportion to the extent that the features of the UXO and 
clutter classes were separable.  The cued data collection and comparison exercise showed 
improved classification capabilities with regard to deriving meaningful shape parameters when 
compared to data acquired on dynamic platforms. 
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2. Objective 
 
The objective of this project was to evaluate and improve physics-inspired discrimination 
performances by systematically scrutinizing the process; namely, the model used during 
characterization and the impact that classifier selection and training has on the final decision. 
 

3. Background 
 
The UXO Standardized Test Sites in Aberdeen Maryland and Yuma Arizona represent real 
world scenarios (Figure 3-1).  They were established under SERDP, ESTCP, and Army funding 
to allow users and developers to baseline and document UXO technology performance by 
defining the range of applicability of specific UXO technologies, by gathering data on sensor and 
system performance, and by comparing results.  Electromagnetic and magnetic data acquired at 
these sites over multiple years and by multiple firms provided an opportunity to systematically 
examine the importance of models, classifiers, and training data when trying to discriminate 
between UXO and clutter using remotely sensed geophysical data. 
 
The UXO Standardized Test Site program was designed to benchmark and validate capabilities 
of service firms and research groups.  Technology demonstrators were free to choose the 
geophysical sensor, the positioning system, ancillary orientation sensors, deployment method, 
and analysis method.  Approximately two dozen collections of digital geophysical data were 
collected, within at least a portion of the sites, from 2002 thru 2006.  Most of the demonstrators’ 
utilized magnetic or electromagnetic sensors of one kind or another (only one firm demonstrated 
a Ground Penetrating Radar technology). 
 
The government scored the demonstrator submittals by using various quantitative metrics aimed 
at deciphering how well they detected subsurface metallic objects and discriminated UXO from 
non-UXO metallic debris.  Performance results released by the Army Environmental Center 
(AEC) were generally poor.  Based on AEC reports, in fact, little to no discernible discrimination 
capabilities were demonstrated using survey data [1]. 
 
This project investigated whether advanced signal processing and quantitative decision processes 
would improve the discrimination results. 
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Figure 3-1 Composite image of Aberdeen Proving Ground, MD, as configured while the data 
analyzed in this study was collected. 
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Figure 3-2 Photographs of standardized UXO emplaced at APG and YPG. 
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Figure 3-3 Photographs of example clutter emplaced at APG and YPG.  A significant fraction of 
the clutter items included in this study was medium to large fragments and possessed thick walls. 
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4. Materials and Methods 
 
Although there was a large number of data sets available, we down selected the data sets based 
on data quality (e.g., signal to noise ratio, minimal timing irregularities), data density (<1m lane 
spacing), data format and structure, and access to unfiltered data.  The selected datasets include 
time-domain (TD) EM61, TD EM63, frequency-domain (FD) GEM-3, and magnetic (Table 4-1). 
 

Table 4-1 Datasets included in this study 

 
 
4.1 Sensor Descriptions 
 
4.1.1 MTADS Data Acquisition System 
The multi-sensor towed array detection system (MTADS) was developed over a period of many 
years by the NRL with funding from SERDP and ESTCP.  Common tow vehicles, data 
acquisition systems, and positioning systems are used for magnetic sensors, EM61 sensors, and 
GEM-3 sensors.  The MTADS hardware utilizes a low-magnetic-signature vehicle that is used to 
tow the different sensor arrays over large areas (10 - 25 acres / day) to detect buried UXO.  
Positioning is provided using high performance Real Time Kinematic (RTK) Global Positioning 
System (GPS) receivers with position accuracies of approximately 5 cm.  The positioning 
technology requires the availability of one or more known first-order survey control points. 
 

4.1.1.1. MTADS Magnetometer Array 
The MTADS magnetometer array is a linear array of eight Cs-vapor magnetometer sensors 
(Figure 4-1).  The sensors are sampled at 50 Hz.  Given a nominal survey speed of 6 mph, 
measurements are taken at 6cm intervals down track.  The horizontal sensor spacing is 25cm.  A 
single GPS antenna placed directly above the center of the sensor array is used to measure the 
sensor positions in real-time (5 Hz).  All navigation and sensor data are time-stamped with 
Coordinated Universal Time (UTC) derived from the satellite clocks and recorded by the data 
acquisition computer (DAQ) in the tow vehicle. 
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See AEC standardized scoring report #671 for more information regarding this system as 
deployed at APG [http://aec.army.mil/usaec/technology/demosites/sr0671.pdf]. 
 

 
Figure 4-1 MTADS tow vehicle and magnetometer array 
 

4.1.1.2. MTADS EM61 Array 
The EM61 MTADS array is an overlapping array of three pulsed-induction sensors with 1x1m 
coils.  The sensors have been modified to make them more compatible with vehicular speeds and 
to increase their sensitivity to small objects (Table 4-2).  Nominal survey speed is three mph and 
the sensor readings are recorded at 10 Hz.  This results in a down-track sampling of ~15 cm and 
a cross-track interval of 50 cm.  In order to obtain sufficient illumination of all three principle 
axes of the anomaly with the primary field, data is collected in two orthogonal surveys.  The 
EM61 array being pulled by the MTADS tow vehicle is shown in Figure 4-2. 
 
Individual sensors in the EM61 array are located using a three-receiver RTK GPS system.  An 
Inertial Measurement Unit (IMU) is also included on the sensor array to provide complimentary 
platform orientation information.  A close-up view of the sensor platform is shown in Figure 4-3 
which shows the three GPS antennae and the IMU (black box under the aft port GPS antenna). 
 

Table 4-2 NRL EM61 Gate timing parameters 
 Delay (µs) 

4 Gate Mode  
Delay (µs) 
Differential Mode 

Gate 1 307 (bottom coil) 307 (bottom coil) 
Gate 2 508 (bottom coil) 307 (top coil) 
Gate 3 738 (bottom coil) 738 (bottom coil) 
Gate 4 1000 (bottom coil) 1000 (bottom coil) 
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Figure 4-2 MTADS EM61 array pulled by the MTADS tow vehicle. 
 

.  
Figure 4-3 Close-up of MTADS EM61 array with GPS and IMU. 
 

4.1.1.3. MTADS GEM-3 Array 
The MTADS GEM-3 array consists of three, 96-cm diameter Geophex, Ltd. GEM-3 sensors in a 
triangular configuration with two sensors across the front of the array and one centered in the 
rear.  The roughly 2-m square array is mounted on a rigid support which is attached to the 
MTADS EM cart using non-metallic fasteners (Figure 4-4).  The GPS / IMU telemetry 
equipment used for GEMTADS is the same as that used for the EM61 array. 
 
The standard GEM-3 sensor drive electronics have been modified to produce a substantially 
higher transmit moment for this array.  Each individual sensor transmits a composite waveform 
of one to ten frequencies in the frequency range of 30 to 20,010 Hz with a base period of 1/30 
sec.  A composite transmitter waveform of nine frequencies log-spaced from 90 to 20010 Hz was 
used.  The array can operate continuously with one sensor actively transmitting while the other 
two sensors are processing data at any given time.  Allowing for a short coil settling time 
between the transmissions from each sensor, an effective array sampling rate of just over 9 Hz is 
achieved.  Sequential transmitter operation also alleviates the need for the orthogonal survey 
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mode employed for the EM61 array.  Down-track sampling is approximately 15 cm and the 
cross-track spacing is 50 cm.  An interleaved survey pattern is used to decrease the cross-track 
spacing to 25 cm. 
 
See AEC standardized scoring report #127 for more information regarding this system as 
deployed at APG [http://aec.army.mil/usaec/technology/demosites/sr0127.pdf]. 
 

 
Figure 4-4 MTADS GEM array mounted on the EM sensor cart.  In addition to the three GEM 
sensors, note the three GPS antennae and the IMU for platform motion measurement. 
 
4.1.2 EM63 man-portable 
The EM63 is a commercially available sensor produced by Geonics, Ltd., of Mississauga, 
Ontario, Canada (Figure 4-5).  It is a high power, high sensitivity, wide bandwidth full time 
domain UXO detector.  The EM63 consists of a transmitter that generates a pulsed primary 
magnetic field which induces eddy currents in nearby metallic objects.  The time decay of the 
currents is measured and recorded by the main console at 20 to 30 geometrically spaced time 
gates covering a time range from 180 microseconds (μs) to 63 milliseconds (ms). 
 
The EM63 system consists of three major hardware subsystems: (i) EM63 Control Console Sub-
System; (ii) Antenna Cart Sub-System; and (iii) GPS Navigation Sub-System.  The EM63 
Control Console Sub-System consists of receiver and transmitter unit, controlled by an integrated 
field computer.  The Antenna Cart Sub-System consists of the transmitter antenna (the 1x1m 
bottom coil) and receiver coils.  Local positioning and georeferencing was accomplished using a 
Trimble 5700 RTK GPS system.  The Trimble system consists of two receivers that are in radio 
communication with each other.  A roving GPS antenna is mounted in the center of the EM63 
coils and 2 meters above the bottom coil.  The operator or assistant carries the controller for the 
roving antenna. 
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See AEC standardized scoring report #304 for more information regarding this system as 
deployed at APG [http://aec.army.mil/usaec/technology/demosites/sr0304.pdf]. 
 

 
Figure 4-5 Photograph of the EM63 sensor during data acquisition by the demonstrator. 
 
4.1.3 EM61 man-portable 
The Geonics EM61 TDEM geophysical sensor, Arc Second Constellation, and Leica Series 1100 
Robotic Total Station laser positioning systems were integrated into a man-towed sensing system 
by TtFW (Figure 4-6).  The system is utilized either on nonmagnetic wheels or as a man-portable 
unit (terrain-dependent) with the lower coil 40 cm above the ground surface.  Two coils, 1x1m, 
are oriented in a horizontal coplanar fashion and separated by a vertical distance of 40 cm.  The 
secondary magnetic field created by metal objects is sampled by the EM61 electronics, which 
reside in the backpack, at times of 216 μs, 366 μs, 660 μs on the bottom coil and 660 μs on the 
top coil after the turn-off of the transmit pulse.  Digital data for these four individual time gates 
are integrated and recorded to a Juniper Allegro field computer at a rate of 12 Hz. 
 
The Arc Second Constellation consists of four laser transmitters and a field computer for logging 
the position data via wireless modem.  Four Trimble Spectra Precision LS920 Laser Transmitters 
are positioned in a diamond or square geometry over 1/2 to 1 acre depending upon the tree 
density.  The transmitters are leveled, and an automatic routine calculates the relative x-y-z- 
plane between the transmitters to a tolerance of 1 inch or less.  A laser detector receiver is 
centered over the EM61 coils on a TtFW designed fiberglass doghouse.  The detector wand 
receives the laser pulses from the four transmitters simultaneously, and computes a position 
based on the known position of the laser transmitters.  The georeferenced data are updated at 2 to 
3 Hz and sent via wireless modem to the field computer for storage.  The Leica Series 1100 RTS 
consists of a laser-based total station survey instrument (transmitter), prism (receiver), and RCS 
100 remote control.  The receiver prism is mounted on a TtFW doghouse centered over the 
EM61 coils, and the RTS automatically tracks the prism at distances of several thousand feet to 
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an accuracy of approximately 1 inch.  Position data for the receiver prism are updated at a rate of 
3 to 4 Hz and stored in the robotic total station’s on-board computer. 
 
See AEC standardized scoring report #157 for more information regarding this system as 
deployed at APG [http://aec.army.mil/usaec/technology/demosites/sr0157.pdf]. 
 

 
Figure 4-6 Photograph of the man-portable EM61 sensor during acquisition at APG. 
 
4.1.4 Data Example 
 
Example sensor data are presented in Figure 4-7.  The EM61 and EM63 data are plotted using a 
color scale that ranges from 0 to 75mV.  The color scale for the GEM data ranges from 0 to 
20ppm and for the leveled magnetometry data -25 to 25nT. 
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Figure 4-7 Example data from a small portion of APG open field.  The superimposed symbols and text identify anomalies for which ground 
truth has been released.  The grid lines are spaced 25m apart. 
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4.2 Anomalies of Opportunity 
 
Only a subset of the total number of targets emplaced at the test sites were suitable for inclusion 
in this study.  First, in order to compare methods and/or data sets, we required ground truth 
information. Ground truth information was available for anomalies in the calibration grid, 
original blind grid, and some of the open field challenge area at the time that this project was 
active.  Not all of the ground truthed targets, however, were suitable for use in this study.  The 
reasons for ground truth release, in fact, included those targets that were ‘least found’, ‘never 
found’, ‘miscellaneous’, ‘near fence’, and as well as ‘misclassified’.  Thus, of the 327 APG open 
field targets for which ground truth was released, 112 of them were not suitable.  At YPG, 
approximately 50 of the released ground truthed anomalies were not suitable. 
 
To be included in this study, the anomalies also had to be common across the data sets and well 
characterized by the models.  Table 4-3 presents the total number of isolated anomalies that 
possess correlation coefficients between measured and modeled data of greater than 0.95, which 
corresponds to fit errors less than 31%, for APG and YPG while Figure 4-8 shows the spatial 
distribution.  We selected a 0.95 correlation coefficient threshold because fits with lower 
correlations possessed inconsistent polarizations and depth estimates across the models tested. 
 
4.3 Data Models 
 
4.3.1 Dipole Model 
Within the dipole model framework, each target is completely characterized by three positional 
parameters (xo,yo,zo), three angles (φ,θ,ψ), and three*Nt betas [β1(ti), β2(ti), β3(ti)], where Nt is the 
number of time gates.  The β’s are eigenvalues of the symmetric effective magnetic polarizability 
tensor, and represent the response of the target along each of three principal axes. 
 
In order to reduce the number of fit parameters, we made use of the fact that the modeled sensor 
response is linear in the β’s.  We therefore performed a non-linear Levenberg-Marquardt 
inversion on the positional and orientation parameters, with an embedded linear determination of 
the β’s at each iteration.  The algorithm continued until the squared error between measured and 
modeled data (chi-squared or χ2) fit between the predicted and measured response at successive 
iterations changes by less than a set tolerance. 
 
Initial guesses were provided for the six spatial parameters.  The three angles were set equal to 
45 degrees.  The positional parameters xo and yo were determined from a signal-weighted mean 
of the target locations.  Previous experience with this method indicated that the final results were 
most strongly dependent on zo, as some guesses could lead to local minima.  The code therefore 
was set to loop over several different initial guesses for zo that covered a reasonable range for the 
targets.  The result with the best χ2 was chosen as the solution. 
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Figure 4-8 Distribution of anomalies for which ground truth information has been released (red 
circles) at the time of the study  
 
Table 4-3 Number of ground-truthed, isolated anomalies that possess fit errors less than 31%. 

 

APG
UXO

APG
NON-UXO

YPG
UXO

YPG
NON-UXO

CAL 100 0 98 0

BLIND 85 115 74 107

OPEN FIELD 129 197 193 97

TOTAL 314 312 365 204
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For the EM63 data, two separate variations on the above algorithm were applied, resulting in 
four sets of fit results.  In the first variation, the code allowed for an offset to be applied to the 
measured signal, effectively producing a dc leveling of the data.  The offset was constant over 
the anomaly, but different for each time gate.  This offset was solved for linearly along with the 
β’s. 
 
The second variation hinged on how the time gate information was used.  In one version, all time 
gates were solved simultaneously, resulting in a single value for each of the six spatial 
parameters over all time gates. In the other version, each time gate was solved independently of 
the others.  Here, each time gate has its own values of the 6 polarization parameters. 
 
Figure 4-9 and Figure 4-10 shows fit results for NRLs EM61 training data and TTFW’s EM61 
training data from the YPG site, respectively.  These plots are helpful to visualize how the 
individual features plot in feature space and to see if certain features are distinct for different 
groups or types of ordnances.  Here, symbols are color coded with red, blue, green and black 
symbols representing large ordnance (105mm  and 155mm), medium ordnance (57mm, MK118, 
60mm, 81mm and 2.75in), small ordnance (20mm, 40mm, M42, BDU-28 and BLU-26) and 
clutter, respectively.  The different symbols within each ordnance group represent a particular 
ordnance type within the group.  For example within the large ordnance group the red plus signs, 
red triangles and red asterisks identify 155mm, 105mm M60 and 105 Heat rounds, respectively.  
Within the medium ordnance group the blue plus signs, blue asterisks, blue triangles, blue 
squares, and blue crosses identify 2.75in, 81mm, 60mm, MK118 and 57mm items, respectively.  
Likewise within the small ordnance group the green plus signs, green asterisks, green triangles, 
green squares, green crosses, and green diamonds identify BDU-28, BLU-26, M75, M42, 40mm 
and 20mm items, respectively. 
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Figure 4-9 Fitted features derived from the NRL EM61 training data, YPG site, fit errors less 
than 31%. 
 

0.0 0.5 1.0 1.5
Depth (m)

0.00

0.05

0.10

0.15

0.20

0.25
S

iz
e

0.001 0.010 0.100 1.000 10.000 100.000
Beta1

0.001

0.010

0.100

1.000

10.000

100.000

B
et

a2

0.001 0.010 0.100 1.000 10.000
beta3

0.1

1.0

10.0

100.0

be
ta

 s
um

1 10 100
beta1/beta2

1

10

100

1000
be

ta
2/

be
ta

3

All Clutter
Small UXO
Medium UXO
Large UXO



 18 

 
Figure 4-10 Fitted features derived from the TTFW EM61 training data, YPG site, fit errors less 
than 31%. 
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4.3.2 Passion-Oldenburg-Billings (POB) model – GPA version 
The full POB analysis assumes an axially symmetric (axial and transverse) tensor dipolar target 
response, and solves for the best fit of 13 parameters; six intrinsic (Ki, Bi, Gi), five extrinsic (x, 
y, z, azimuth, inclination), and the two ‘time shift’ parameters (Ai). The time dependence is of 
the form:  
 
              F(t) = (Geometric Factor) * Ki  (t – Ai)-Bi  exp(-t/Gi) 
              (t in msec,  i = 1,2 are the axial and transverse responses.) 
 
The POB algorithm has been incorporated into UX-Analyze under ESTCP project MM-0210 
with the modifications described below. 
 
The algorithm has been modified to allow an input target depth if available.  If not available the 
algorithm starts with a zero initial depth estimate, which seems to converge much better to the 
global best fit minimum than using a depth estimate calculated from the top coil to bottom coil 
ratio. 
 
The Gi parameters (time constants of late exponential decay) would have diagnostic value (for 
UXO discrimination), but are difficult to determine in typical EM63 data sets because the late 
gates are often ‘in the noise’.  In fact, the inversion often returns negative Gi time constants, in 
order to fit the late gate.  The ‘time shift’ parameters (Ai) contribute a slight rounding (concave 
down for negative Ai) in the early log-linear decay which is often observed in field data.  
However, it is not clear whether this is due to an EM63 timing problem, to unequal amplitude 
response across the early gates, or to an intrinsic target property.  The possible diagnostic value 
of the Ai is unclear.  For these reasons, and to reduce the dimensionality of the modified Nelder-
Mead Simplex minimization from 13 to 9 parameters, we have constrained Ai = zero and the 
inverse of Gi = zero in the current POB module. 
 
The POB model was used to characterize WES EM63 data.  Figure 4-11 shows fit results for 
WES’s EM63 training data from the YPG site.  As describe above the symbols are color coded 
with red, blue, green and black symbols representing large ordnance, medium ordnance, small 
ordnance and clutter, respectively. 
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Figure 4-11 Fitted features derived from the WES EM63 training data, YPG site, fit errors less 
than 31%. 
 
4.3.3 Empirical fit to GEM3 
 
This empirical approach is built upon the dipole approximation.  The signal at any spatial point 
can be represented by a linear combination of 3 β’s.  These β’s are the eigenvalues of the 
symmetric effective magnetic polarizability tensor, and represent the response of the target along 
each of three principal axes.  The β’s are in turn expressed in terms of an empirical five- or six-
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parameter model [2].  This model is based on the theoretical responses of spheres and cylinders 
and has been shown empirically to fit a wide range of objects.  The parameters of this model are 
τ, a time constant; A, an amplitude parameter; and S, f, and ν, shape parameters.  In all, there are 
18 features reported: 6 each from 3 principal axes.  These features represent non-physical fit 
parameters from a frequency domain response model.  Parameters are recovered in a two-stage 
process:  (1) target position and orientation are determined through standard dipole-model 
inversion;  (2) A 6 parameter FD response model is fit separately to observed beta response  
values, jβ , of each principal axis, which resulted from step (1).  The 6 parameter model is: 
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where fitted parameters S, f, C, and ν  are dimensionless, while parameter A has dimension of 
volume, and parameter τ  has dimension of time [2].  The symbol Iν(α) is the Modified Bessel I 
function of order ν.  All fitted parameters are real scalars.  This model was derived from analytic 
solutions for the conducting loop, for spheres of arbitrary permeability, and for infinite cylinders 
illuminated transversely, also with arbitrary permeability.  It provides exact matches to all of 
those analytic solutions through parameter adjustment, and also provides good matches to a wide 
range of irregularly shaped UXO. 
 
Figure 4-12 shows fit results for WES’s EM63 training data from the YPG site.  As describe 
above the symbols are color coded with red, blue, green and black symbols representing large 
ordnance, medium ordnance, small ordnance and clutter, respectively. 
 
 
 
 
 
 



 22 

 
Figure 4-12 Empirical fitted features derived from the NRL GEM-3 training data, YPG site, fit 
errors less than 31%. 
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4.3.4 Ellipsoid Model 
Similar to the empirical model described in the previous section, the ellipsoid model used to 
invert the GEM-3 data was also built upon the dipole approximation.  As before, the 
polarizations are first expressed in terms of an empirical 5- or 6-parameter model [2].  The 
parameters of this model are τ, a time constant; A, an amplitude parameter; and S, f, and ν, shape 
parameters.  There are 3 sets of parameters per object, one for each principal axis.  Here, in an 
effort to tie these parameters to actual physical dimensions we modeled the targets as ellipsoids.  
Assuming that the target is subjected to a uniform transmit field, the demagnetization factors can 
be expressed analytically in terms of A, b, and c, the semi-principal axes of the ellipsoid.  This 
allows us to express the last four parameters in the empirical model in terms of a, b, c, and μr, the 
relative permeability of the target [3]. 
 
The remaining parameter, the τ’s, are handled by two different methods.  In the first, the τ’s are 
simply treated as 3 independent fit parameters.  In the second method, we make use of the fact 
that the τ’s scale as a size squared to tie them into the ellipsoidal semi-principal axes.  By 
utilizing empirical measurements by Ben Barrowes [5], relating the ratio of the time constants to 
the ratio of ellipsoid sizes, we need add only one new fit parameter, a Scale factor relating a2 to 
τa. 
 
In summary, both inversion methods require 3 positional parameters (xo,yo,zo), 3 angles (φ,θ,ψ), 
the 3 ellipsoidal semi-principal axes (A,B,C), and the relative permeability of the target (μr).  The 
first method then requires 3 τ’s, while the second requires only a scale factor. 
 
Initial guesses were provided for all parameters.  The positional parameters xo and yo were 
determined from a signal-weighted mean of the target locations.  The other parameters were set 
to reasonable values.  With such a large number of parameters, ensuring that the inversion 
reaches the global minimum often requires a range of initial guesses for parameter values.  In an 
effort to balance convergence to the global minimum with reasonable run time, we took the 
following approach.  First, we perform multiple loops over the target depth and orientation (plus 
μr for the 3 τ method), but only allow for 5 iterations of the inversion routine.  Whichever set of 
initial guesses leads to the smallest χ2 fit between the predicted and measured response after 
these 5 iterations is then used in the full inversion.  We found that this approach produced the 
same result as doing the multiple loops over 100 iterations, but was significantly faster. 
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Figure 4-13 Ellipsoidal scale fitted features derived from the NRL GEM-3 training data, YPG 
site, fit errors less than 31%. 
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Figure 4-14 Ellipsoidal tau fitted features derived from the NRL GEM-3 training data, YPG site, 
fit errors less than 31%. 

1 10 100
A/B

1

10

100

B
/C

0.01 0.10 1.00 10.00 100.00
A

0.01

0.10

1.00

10.00

100.00

B

0.001 0.010 0.100 1.000
C

0.1

1.0

10.0

100.0

A
+B

+C

0.1 1.0 10.0 100.0 1000.0
Tau1/Tau2

0.1

1.0

10.0

100.0

Ta
u2

/T
au

3

10-2 100 102 104 106

Tau1

10-4

10-2

100

102

104

106

Ta
u2

10-4 10-2 100 102 104

Tau3

10-2

100

102

104

106

Ta
u1

+T
au

2+
Ta

u3

All Clutter
Small UXO
Medium UXO
Large UXO



 26 

4.3.5 TD-FD Loop Model 
Target responses can be expressed as an infinite sum of loop response terms.  That applies both 
for TD and FD.  The central idea of this method is to create basis vectors representing signals 
(both TD and FD) for loops with given fundamental time constants, then find linear 
combinations of these vectors to best match observed signals.  Observed signal include both TD 
and FD information, and the weights which result from regression represent the contribution in 
both TD and FD of the associated loop.  
 
During inversion, target XYZ coordinates, and phi,theta,psi euler angles are searched 
nonlinearly.  With each candidate set X,Y,Z,phi,theta,psi  typically three basis vectors are found, 
labeled F,G, and H, corresponding to the signals associated with longitudinal response, and the 
two transverse responses.  The best linear combination of F,G, and H is then found to match 
observed data on each sensor channel, and the resulting weights are the target betas b1,b2, and 
b3 for that channel. 
 
In this solver, each candidate X,Y,Z,phi,theta,psi resulted in more than 3 basis vectors.  Each 
loop creates a separate basis vector for each principal axis, so for nl loops, there would be nl * 3 
basis vectors offered to the regression routine to match data.  In addition, each of these basis 
vectors contains all points and all channels, so channels are not solved independently.  This 
expands the size of the regression step, but it may be solved linearly with singular value 
decomposition, keeping solve times fast. 
 
When the number of loops, nl, is high, starting around nl >=10, a problem develops with linear 
solution.  The regression step tends to select large positive & negative weights on similar basis 
vectors, which almost cancel.  This can cause undesired effects such as negative TD estimates at 
times where no data is present to constrain the model.   A different kind of regression can be 
performed, NNLS(), a least-squares minimization algorithm developed by Lawson and Hanson 
[6] which restricts weights to be non-negative, but this greatly slows computation.  Instead, we 
rely on keeping nl down to 6 or less. 
 
4.3.6 Duke’s Singularity Expansion Model 
The Duke Singularity Expansion Model (SEM) for a Body of Rotation (BoM) was based on the 
idea that the UXO or clutter object can be represented as a single equivalent dipole.  The model 
assumes that the target object is symmetric in a single plane (such as a cylinder).  The model 
describes the dipole moment magnetization tensor as a single pole model in the frequency 
domain. [7]   
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The time-domain magnetization tensor is given by   
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The scattered magnetic field is given by, 
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r is the distance from the object to the sensor and the magnetization tensor coordinate system 
must be aligned with the coordinate system of the sensor. 
 
The model parameters are found by computing the least squares (LSQ) solution between the data 
and the model, given a particular set of model parameters.  The model parameters are found by 
randomly initializing a set of parameters and then applying a gradient descent algorithm to 
converge to a locally best-fit (minimum error) solution.  The non-linear solution space creates 
the possibility for many locally minimum error solutions that may not be globally the best-fit to 
the data.  To overcome this problem, the input parameter space is randomly sampled hundreds of 
thousands of times to find a set of good starting points for the gradient descent algorithm.  Since 
a good initial starting point is the key to finding the best overall solution, it is important to 
sample the parameter space as densely as possible.  The suitability of the initialization is 
determined by finding the error between the model and the data.  This process is typically fast 
compared to finding the complete gradient descent solution.  Once the best initial starting points 
are found, the full gradient descent solution can be computed for only the best N initial 
parameters.  
 
4.3.7 Magnetic Model 
 
The theoretical model used is a magnetic dipole.  The magnetic field anomaly due to a ferrous 
object can be expanded in a multi-pole expansion with the leading term representing the dipole 
contribution.  The higher order terms fall off more sharply with distance so if the object is 
compact and sufficiently far from the sensor the dipole term will dominate. 
 
Target location, depth, and magnetic dipole moment (which is related to size) can be estimated 
from magnetometer survey data.  Figure 4-15 presents estimated versus actual depth and size 
measures as well as plots of some relevant features. 
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Figure 4-15 Actual versus estimated depth and size plots and other relevant features plots; NRL 
magnetic array data, YPG open field 
 
4.4 Statistical Pattern Recognition Toolbox (SPRT) Framework 
 
The SPRT provides a cohesive suite of interrelated functions that aid in the development, cross-
validation, testing, and final selection of state of the art statistical pattern classifiers.  It provided 
seamless integration of one-off training, k-folds cross-validation, feature generation, feature 
selection, classifier training, classifier scoring, and classifier/decision boundary display for 
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general M-ary and binary classification problems.  The SPRT is sometimes referred to as the 
DPRT. 
 
A variety of methods for classification, cross validation, scoring and performance metrics have 
been implemented in the SPRT, as have several basic programmatic and usability functions (data 
handling, data display, training, etc.)  Classifiers that have been included include a traditional K-
nearest-neighbor and a Duke modification to this approach, a Fisher Linear Discriminant 
(specifically for the SIG effort), a GLRT, a matched subspace detector, Parzen Window density 
estimation, kernel matching pursuits, a relevance vector machine, a support vector machine 
(specifically for the SIG effort), and fuzzy k-means.  In addition, under the SIG effort, specific 
data classes that support UXO data and UXO data formats have been developed and included. 
Feature generation includes principal component analysis and independent component analysis, 
and Features selection includes Sequential Forward, Sequential Backward, N Forward/K 
Backward, Branch and Bound, Beam Search (under SERDP/Duke support), a novel Viterbi-
based Parallel-Sequential (PARSE) search (under SERDP/Duke support), and an exhaustive 
search (specifically for the SIG effort).  Scoring metrics include area under the ROC, Pd at a 
given Pf, Pf at a given Pd, and Percent Correct.  Many distance metrics are also included for 
Wrapper-based feature selection methodologies.  Cross-validation techniques include automatic 
k-folds cross validation over data sets and N-K folds averages over N iterations of K-folds.  The 
SPRT provides a bridge between theoretical classifier development and real-life design issues. 
 
The SPRT was used to classify and analyze ground truthed data acquired at YPG.  Polygons 
were developed by hand, and then the data in the polygons was passed off to the feature 
extraction algorithms.  The feature normalization, selection and classification processes are 
described below. 
 
4.4.1 Feature normalization 
 
Each feature was normalized independently.  The feature normalization consisted of three steps.  
The feature values were first log-scaled (to prevent taking the log of negative values, the feature 
values were shifted to have a minimum value of 1 prior to taking the log).  The feature values 
were normalized by the standard deviation calculated over the interquartile values (25 percentile 
to 75 percentile).  We subtract the median value as the final step.  Using the standard deviation of 
the interquartile range, rather than the standard deviation of all values, and subtracting off the 
median rather than the mean, makes the normalization more robust in the presence of outliers 
(i.e. outliers don't skew the normalized features). 
 
Some of the feature values that were calculated as ratios of two model parameters can take 
values of infinity, which will cause problems during classifier training.  As part of the feature 
normalization, any feature values equaling positive or negative infinity were remapped to a value 
equaling 100 times the maximum non-infinite absolute value.  For example, with this remapping 
rule the sorted feature values [-inf -8 -3 0 2 3 inf] would be remapped to [-800 -8 -3 0 2 3 800] 
since the maximum non-infinite absolute value is eight.   
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4.4.2 Feature selection 
 
Feature selection was implemented using wrapper techniques, measuring classification 
performance on a set of training data with various sets of features to find the best-performing 
feature set.  The feature selection technique was performed using four classifiers described 
below.  A forward sequential feature selection routine was used to find a rank-ordered list of the 
20 best features for models having more than 20 features; for models with fewer than 20 features 
it was possible to perform an exhaustive feature search for the best feature set containing 
between 1 and 5 features.  The wrapper techniques used k-folds cross-validation with k = 5.  The 
fitness metric for each feature set or feature, used to determine the best feature set in the 
exhaustive search or which feature to add next in the forward sequential search, was the area 
under the ROC curve.  If two feature sets / features have the same area under the ROC curve, the 
probability of false alarm at a probability of detection equaling 90% was used as a tie-breaker.  
The number of features was selected to maximize the fitness metric (area under the ROC curve) 
on the training data. 
 
4.4.3 Classifiers 
 
K-NN: The k-nearest neighbor (K-NN) classification rule uses the k neighbors of an unlabeled 
test point to estimate its label.  The posterior probability of the class H given the unlabeled test 
point x, p(H|x), is approximated by the proportion of the k neighbors in the labeled training data 
that are from class H.  Thus, K-NN provides a simple and intuitive classification rule where new 
data points are labeled according to a majority-vote of the nearest neighbors.  K-NN has been 
shown to have attractive asymptotic properties when the amount of available training data and 
the number of neighbors k are both large. 
 
GLRT: The generalized likelihood ratio test is grounded in Bayesian decision theory.  The 
likelihood ratio test λ(x) is defined at the ratio of two conditional probabilities: the probability of 
the features given H1 p(x|H1)  and the probability of the features given H0 p(x|H0), where H1 and 
H0 correspond to the UXO and clutter classes, respectively.  Given probability distributions of 
the feature values for the classes of UXO and clutter, the likelihood ratio test can be calculated 
for any new data point by taking the ratio of the likelihoods of the features of the new data point 
under both H1 and H0.  However, one issue arising with the likelihood ratio test is that the 
probability distributions p(x|H1) and p(x|H0) are rarely known.  Thus, one solution is to assume 
the conditional probability distributions follow a parametric form with parameters estimated 
using the training data.  The GLRT is calculated using the conditional probabilities that are 
dependent on the estimated parameters [8].  In our implementation it is assumed that the UXO 
features have a Gaussian distribution.  The clutter features were modeled using an improper 
uniform distribution that does not have estimated parameters; therefore, we are not training our 
clutter class (which can be very diverse and difficult to estimate). 
 
SVM and RVM: The support vector machine (SVM) and relevance vector machine (RVM) are 
generalized linear classifiers.  In both the SVM and RVM, the use of a kernel to represent the 
input data introduces nonlinearity and can transform the data into a higher dimensional space 
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where it may be separable by a hyperplane. The differences between the SVM and RVM arise in 
the frameworks for optimization and training.  The RVM finds relevance vectors that typically 
are located near the “centroids” of the decision boundary contours, whereas the SVM finds the 
support vectors that define the decision boundary.  The RVM also does not utilize a margin 
between the classes, which is directly optimized in the training of the SVM.  The SVM finds a 
decision boundary with the constraint of maximizing the margin, whereas the RVM does not 
consider a boundary margin in any sense.  Instead, the RVM is a Bayesian kernel machine that 
applies a Bayesian framework to define the weights and relevance vectors through iterative 
calculation of the posterior weight distributions.  A characteristic common to both the RVM and 
SVM is sparse representation of the decision space using a small subset of the training data.  
Rather than keeping track of all of the training data, the RVM and SVM techniques only require 
a limited subset of training vectors to discriminate between classes.  The RVM tends to select 
fewer relevance vectors than the number of support vectors found by the SVM.  Therefore, the 
training data is represented by an even more compact set of vectors which can further reduce the 
risk of overtraining. 
 
4.4.4 Training Labels and Types 
 
We trained on data from both APG and YPG in order to increase number and type of labeled 
data.  Prior to doing so, we compared classification results of APG and YPG separately (Figure 
4-16).  We used a common definition of misfit (linear Pearson correlation coefficient) across 
models for different data types and included only those targets whose mean coherence was 
greater than 0.89, which correlates to a dipole fit error of approximately 31%.  The table at the 
right hand side of the figure shows the ordnance type distribution of those targets available for 
training.  All told, we had approximately 180 training labels for a wide variety of ordnance types 
(Figure 4-17). 
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Figure 4-16 Classification ROCs for different scenarios of training and test data sets  
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Figure 4-17 Type and number of training labels available for this study.  As used here, ‘NS’ 
indicates non-standard munitions.  All other notations are specific subtypes of a particular 
munition type. 
 
  

TYPE Number
105mm M456 HEAT 11
105mm M60 14
105mm NS 4
155mm M483A1 11
155mm NS 3
2.75 M230 9
2.75 NS 2
20mm M55 4
40mm M385 1
40mm MK2 8
57mm M86 11
57mm NS 6
60mm M49A3 8
60mm NS 7
81mm M374 7
81mm NS 14
BDU-28 12
BDU-28 NS 7
BLU-26 11
BLU-26 NS 3
M42 8
M42 NS 1
M75 5
M75 NS 11
MK118 2
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5. Results and Discussion 
 
To compare classification performances, we first performed a forward sequential feature 
selection to identify which features produced the best performance for each combination of data 
type and model (Figure 5-1).  We started with features that are intrinsic to the target (i.e., 
principal axis polarizability, moments, characteristic frequencies, etc.), then generated candidate 
subsets by adding a single feature to the set of previously-selected features, and finally evaluated 
subsets using a KNN classifier.  Performance measures were defined to be (i) the area under 
(AUC) the ROC curve and (ii) the probability of false alarm (PFA) at a probability of detection 
(Pd) of 0.95.  Example ROC curves for specific, but arbitrary AUC measures, are shown Figure 
5-2. 
 
The full results of the feature selection and performance evaluation are presented in detail in the 
Appendix.  In the following sections, we high light and discuss the most salient results. 
 

 
Figure 5-1 Schematic showing the forward sequential feature selection process adopted for 
identifying the best performing set of features for each combination of  data type and model. 
 

 
Figure 5-2 Comparison of hypothetical ROC curves possessing specific AUC measures 
 
  



 35 

5.1 Performance Statistics – all UXO and all non-UXO 
 
Table 5-1 presents summary measures for the best performance obtained for each data type and 
model combination included in the study. 
 

Table 5-1 Performance Measures as a function of Data and Model 

 
 
 
 
 

Data/Model AUC PFA @ PD = 0.95

EM61 Array (UXA) 0.666 0.955

EM61 Array (latest solver w/ Mag) 0.766 0.804

EM61 Cart 0.630 0.938
GEMTADS (best) 0.818 0.723
Magnetic (UXA) 0.677 0.893
EM63 (POB) 0.789 0.625
EM63 (SEM) 0.670 0.964
TDFD 0.737 0.839
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5.2 ROC Performance as a function of Classifier 
 

 
 

 
Figure 5-3 Performance ROCs as a function of classifiers for specific data types and best performing model 
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5.3 Performance as a function of Data/Model 
 
Performance ROCs for various combinations of data type and model are graphically 
superimposed in Figure 5-4. 
 
We show in Table 5-2 the best performances observed for each data type (EM61, Mag, and 
EM63).  This analysis utilized a KNN classifier for all data types. 
 

 
Figure 5-4 Performance ROCs for specific data types and models as detailed in the key. 
 
Table 5-2 Performance Measures for EM61, Mag, and EM63 data types 
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5.4 Inverted Features 
 
In this section, we graphically present the inverted features to provide a feel for the dispersion 
present in the recovered features.  In these figures, the UXO is color coded by size class, where 
‘Large UXO’ includes 105mm and 155mm, ‘Medium UXO’ includes 57mm, 60mm, 81mm, 
and2.75in rockets, and ‘Small UXO’ includes 20mm, 40mm,M42,M75, MK118, BLU-26, and 
BLU-28. 
 

 
Figure 5-5 Inverted model features for EM63 data 
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Figure 5-6 Inverted model features for EM61 data 
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Figure 5-7 Inverted model features for magnetic data 
 
5.5 All UXO versus all non-UXO Results Summary 
 
The analysis up to this point has included all types of UXO present at the standardized test sites 
and all clutter.  Although differences in performances are observed for various combinations of 
data type, model, and classifier, none of the combinations produces stellar classification 
performance. 
 
The following general statements summarize classification performances when considering all 
UXO and all non-UXO: 

• KNN classifier showing marginally better performance 
• Broadband EMI sensors (EM63 and GEM) performed slightly better than EM61 
• Marginal discrimination capabilities are observed if ourobjective is to separate all UXO 

from all non-UXO 
 
Poor size- and/or shape-based discrimination results are not surprising for these data, however, 
given that we observe: 

• The nominal dipole fit error is 20-30% 
• UXO size ranges from small (20mm) to large (155mm & 500lb bomb) 
• Emplaced clutter is primarily medium to large, & thick-walled 

 
5.6 Subgroups based on Size 
 
In this section, we subdivide the UXO and clutter into size classes, as defined in Table 5-3, to see 
what effects this has on the observed classification performance measures.  It is reasonable to 
consider size-based classes because limited use ranges may not possess the wide range of UXO 
types and clutter that was emplaced at the standardized test sites.  Sample sizes for each class are 
shown in Table 5-4. 
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Table 5-3 Size based definitions of UXO and clutter 
Class Label Ordnance Type within Class 
Small UXO 20mm, 40mm, M42, M75 , MK118, BLU-26 and BDU-28 
Medium UXO 57mm, 60mm, 81mm and 2.75in 
Large UXO: 105mm and 155mm 
Small clutter weight < 1000 g (~less than 57mm) 
Medium clutter 1000 g < weight < 8000 g (~57mm to 105mm) 
Large clutter weight > 8000 g (~105mm and up)  
 
Table 5-4 Sample size for various combinations of UXO and clutter 

 

 
Figure 5-8 Performance ROCs for size based scenarios versus all clutter 

TOI Non-TOI Number of UXO Number of non-UXO

All All 149 112
Large Small 39 62
Large Small + 

Medium
39 103
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Figure 5-9 Performance ROCs by data type for Large UXO versus small clutter; KNN classifier 
 
 



 43 

 
Figure 5-10 Performance ROCs by data type for Large UXO versus small and medium sized 
clutter; KNN classifier 
 
5.7 Performance Bounds 
 
For discussion purposes, we show in Figure 5-11, the classification performance if the length and 
width of UXO and clutter, as measured by a tape measure, are submitted to a classifier. 
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Figure 5-11 Performance bounds assuming inverted features duplicate the observed physical dimensions of length and width 
(assumed to be equal to the diameter for axial symmetric UXO).  Left column – inverted polarization features.  Ground Truth 
(GT) dimensions as reported.  Right side – ROC generated by submitting the length and width data to a KNN classifier. 
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5.8 Comparison of Dynamic versus Static Data Collection 
 
In this section, we present a comparison between data collected in cued mode at APG with 
reconnaissance data collected in dynamic modes.  The cued data collection was acquired, in 
support of this effort, to provide an opportunity for removing data problems associated with 
imprecise spatial registrations. 
 
For cued data collection, we acquired EM61 data using a mobile template as shown in Figure 
5-12.  We used an EM61 coil set of 0.5x1m coils.  Data were collected on a 7x5 point rectangle 
(25cm x 50cm), covering an area of 1.25 x 2.0m.  The bottom coil was 20cm above the ground. 
 
 

  
 

 
Figure 5-12 Photographs of three different collection schemes compared in this section.  Top left 
shows a cued deployment using a fixed sampling scheme.  Top right shows the TEMTADS 
vehicular array.  Bottom left shows a man-towed deployment scheme.  
 
Figure 5-13 plots the recovered dipole fit errors versus SNR for common anomalies but different 
collection schemes.  It is evident from this figure, and from Table 5-5, that the template (cued) 
data possess smaller fit errors than dynamic survey data and that fit error is inversely related to 
SNR. 
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Figure 5-13 Comparison of dipole fit errors for common anomalies at APG with an EM61 sensor 
using a template, cart, and vehicular array deployment. 
 
Table 5-5 Inverted fit statistics 
 SNR  

Mean  
SNR  
Standard 
Deviation  

Dipole Fit Error 
(Mean)  

Dipole Fit Error 
Standard 
Deviation  

Template (stationary)  42.9  12.3  4.7  5.1  

TTFW (dynamic)  35.7  10.8  24.1  17.2  

NRL (dynamic)  41.6  10.7  19.4  11.9  

 
 
Figure 5-14 and Figure 5-15 show measures of fitted results for the three collection schemes.  As 
observed in these figures, the reported depth errors are somewhat similar for all three data sets.  
The dispersion in secondary and tertiary polarizability, however, is noticeable.  Data acquired 
using the template possessed the smallest scatter while the EM61 cart (person portable) showed 
the most scatter.  
 
Classification performance for all UXO versus all clutter for each data type is displayed in 
Figure 5-16.  Not surprising, template performed the best, although it is not considered stellar, 
and the EM61 cart performed the poorest. 
 
Figure 5-17 and Figure 5-18 presents features and classification performances for size based 
scenarios.  As evident in these figures, sized based classification can be successful if the target 
population present at the site is favorable. 
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Figure 5-14 Similar errors in reported depth estimates are observed for the three deployment schemes; labeled UXO only. 
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Figure 5-15 Polarization shape comparison plots (principal axis B1 compared to second/tertiary B2,B3 polarizations) 
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Figure 5-16 Performance ROCs for template, cart, and vehicular array; EM61sensor, all UXO versus all clutter 
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Figure 5-17 Polarizations segmented by survey modality and target size 
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Figure 5-18 Performance ROCs for template, cart, and vehicular array; EM61sensor, sized based UXO classes versus all 
clutter 
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5.9 Discussion 
 
Our objective was to study discrimination capabilities of feature based characterization and 
classification techniques using data of opportunity acquired by others at the UXO Standardized 
Test Sites in APG and YPG.  The fundamental issues investigated included the model used 
during characterization and the impact that classifier selection has on classification performance.  
After re-leveling and lagging the EM61 cart data, we inverted anomaly data for each data type 
using dipole, ellipsoidal, empirical, loop fit, joint frequency-time domain, and singularity 
expansion  models.  We then classified the resulting feature vectors with SVM, RVM, GLRT, 
and KNN statistical classifiers.  We evaluated classification performance using two metrics 
derived from ROC curves; namely, (i) the total area under the curve and (ii) the probability of 
false alarms at 0.95 probability of detection. 
 
We selected five data sets to include in this study based on data quality, type, signal-to-noise, 
and availability at appropriate intermediate processing stages.  The datasets included time-
domain EM61 (man-towed single sensor cart and vehicle-towed array), time-domain EM63, 
frequency-domain GEM-3, and magnetic data. 
 
None of the classifiers or sensor/model combinations performed well when the TOI included 
20mm through 155mm because the scatter of the features covered much of the feature space and 
thus overlapped with the features for clutter items.  When the TOI were narrowed based on size 
(small, medium and large) the performance improved significantly. 
 
A related cued data collection and comparison exercise showed an improved capability with 
regard to deriving meaningful shape parameters when compared to data acquired on dynamic 
platforms.  
 

6. Conclusions and Implications for Future Research/Implementation 
 
Our efforts to discriminate UXO from clutter using shape based information derived by inverting 
dynamic EM61, EM63, GEM, or magnetic data acquired at APG and YPG on dynamic platforms 
resulted in moderate to poor classification performances for all combinations. 
 
Classifying based on inverted size, however, should be relatively successful and may prove 
useful at limited-use sites that contain a small range of ordnance types.  The degree of success 
will depend entirely on the inherent size differences between the UXO and clutter at a given site. 
 
The implication for future research is that new sensor technologies are required to realize 
acceptable classification performances. Given that there are multiple advanced sensors currently 
in development that are designed to maximize discrimination capabilities and mitigate 
limitations associated with single monostatic transmit-receive EMI systems, we recommend 
focusing future analyses efforts on their data. 
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Appendix 
 
K-folds training and testing with k = 25 was performed to generate the classification results for 
comparing performance across model sets and classifiers.  Each classifier used the feature set 
that maximized the area under the ROC curve in the feature selection stage and compared the 
results to using all the features.  The final feature sets for each of the classifiers for the various 
sensor/model combination and targets of interest (TOI) are listed in Table 6-1 to Table 6-10. 
 
ROC curves are shown in Figure 6-1 to Figure 6-40 for various sensor/model combinations at 
YPG.  For each sensor/model combination a ROC curve is presented for each classifier assuming 
four different TOI; i) all ordnance (20mm to 155mm), ii) small ordnance (20mm, 40mm, M42, 
BDU-28, BDU-26), iii) medium ordnance (57mm, MK118, 60mm, 81mm, 2.75in) and iv) large 
ordnance (105mm and 155mm). 
 
Table 6-1 Best set of features for each of the classifiers with different TOI using the NRL EM61 
array data at YPG. 
Classifier TOI All Ordnance 

Features 
TOI Small Ordnance 
Features 

TOI Medium Ordnance 
Features 

TOI Large Ordnance 
Features 

GLRT Beta1/Beta2 Beta2, Beta3, 
Beta1/Beta2 

Beta2, Beta1/Beta2 Beta2, Beta1/Beta2, 
Beta2/Beta3, Beta sum 

SVM Beta sum Beta2, Beta3, 
Beta1/Beta2 

Beta1, Beta1/Beta2, 
Beta sum 

Beta2, Beta1/Beta2, 
Beta sum 

RVM Beta1, Beta2, 
Beta1/Beta2, 
Beta2/Beta3, Beta sum 

Beta1, Beta3, 
Beta1/Beta2, 
Beta2/Beta3, Beta sum 

Beta1, Beta2, 
Beta1/Beta2 

Beta2, Beta3, Beta sum 

KNN Beta1/Beta2, Beta sum Beta2, Beta1/Beta2, 
Beta2/Beta3 

Beta1, Beta2, 
Beta1/Beta2, Beta sum 

Beta1, Beta3, Beta sum 

All 
features 

Beta1, Beta2, Beta3, Beta1/Beta2, Beta2/Beta3, Beta sum 
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Figure 6-1 ROC curves for NRL EM61 array data using the dipole model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were all ordnance ranging from 20mm to 155mm. 
 

 
Figure 6-2 ROC curves for NRL EM61 array data using the dipole model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were small sized ordnance items (20mm, 40mm, M42, BDU-
28, BDU-26). 
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Figure 6-3 ROC curves for NRL EM61 array data using the dipole model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were medium sized ordnance items (57mm, MK118, 60mm, 
81mm, 2.75in). 
 

 
Figure 6-4 ROC curves for NRL EM61 array data using the dipole model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were large sized ordnance items (105mm, 155mm). 
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Table 6-2 Best set of features for each of the classifiers with different TOI using the TTFW 
EM61 cart data at YPG. 
Classifier TOI All Ordnance 

Features 
TOI Small Ordnance 
Features 

TOI Medium Ordnance 
Features 

TOI Large Ordnance 
Features 

GLRT Beta3, Beta1/Beta2, 
Beta2/Beta3, Beta sum 

Beta1, Beta1/Beta2, 
Beta2/Beta3, Beta sum 

Beta2, Beta3, 
Beta1/Beta2, 
Beta2/Beta3, Beta sum 

Beta2, Beta3, 
Beta1/Beta2, 
Beta2/Beta3, Beta sum 

SVM Beta2/Beta3, Beta sum Beta2, Beta2/Beta3 Beta1, Beta1/Beta2 Beta3, Beta1/Beta2, 
Beta2/Beta3 

RVM Beta1, Beta2, Beta3, 
Beta1/Beta2, Beta sum 

Beta1, Beta2, Beta3, 
Beta1/Beta2 

Beta2, Beta3, 
Beta1/Beta2, Beta sum 

Beta3, Beta1/Beta2 

KNN Beta1, Beta3, 
Beta1/Beta2, Beta sum 

Beta1, Beta1/Beta2 Beta1, Beta1/Beta2, 
Beta2/Beta3 

Beta2, Beta3, Beta sum 

All 
features 

Beta1, Beta2, Beta3, Beta1/Beta2, Beta2/Beta3, Beta sum 

 

 
Figure 6-5 ROC curves for TTFW EM61 cart data using the dipole model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were all ordnance ranging from 20mm to 155mm. 
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Figure 6-6 ROC curves for TTFW EM61 cart data using the dipole model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were small sized ordnance items (20mm, 40mm, M42, BDU-
28, BDU-26). 

 
Figure 6-7 ROC curves for TTFW EM61 cart data using the dipole model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were medium sized ordnance items (57mm, MK118, 60mm, 
81mm, 2.75in). 
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Figure 6-8 ROC curves for TTFW EM61 cart data using the dipole model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were large sized ordnance items (105mm, 155mm). 
 
Table 6-3 Best set of features for each of the classifiers with different TOI using the NRL Mag 
array data at YPG. 
Classifier TOI All Ordnance 

Features 
TOI Small Ordnance 
Features 

TOI Medium Ordnance 
Features 

TOI Large Ordnance 
Features 

GLRT Magnetic moment Magnetic moment Magnetic moment Solid angle, Magnetic 
moment 

SVM Solid angle, Magnetic 
moment 

Solid angle, Magnetic 
moment 

Magnetic moment Solid angle, Magnetic 
moment 

RVM Solid angle, Magnetic 
moment 

Solid angle, Magnetic 
moment 

Solid angle, Magnetic 
moment 

Solid angle, Magnetic 
moment 

KNN Solid angle, Magnetic 
moment 

Solid angle, Magnetic 
moment 

Solid angle, Magnetic 
moment 

Solid angle, Magnetic 
moment 

All 
features 

Magnetic moment, Solid angle 
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Figure 6-9 ROC curves for NRL Mag array data at YPG for different classifiers and features 
selection methodologies using features of anomalies with fit errors less than 31% .  The targets of 
interest were all ordnance ranging from 20mm to 155mm. 
 

 
Figure 6-10 ROC curves for NRL Mag array data at YPG for different classifiers and features 
selection methodologies using features of anomalies with fit errors less than 31% .  The targets 
of interest were small sized ordnance items (20mm, 40mm, M42, BDU-28, BDU-26). 
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Figure 6-11 ROC curves for NRL Mag array data at YPG for different classifiers and features 
selection methodologies using features of anomalies with fit errors less than 31% .  The targets 
of interest were medium sized ordnance items (57mm, MK118, 60mm, 81mm, 2.75in). 
 

 
Figure 6-12 ROC curves for NRL Mag array data at YPG for different classifiers and features 
selection methodologies using features of anomalies with fit errors less than 31% .  The targets 
of interest were large sized ordnance items (105mm, 155mm). 
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Table 6-4 Best set of features for each of the classifiers with different TOI using the NRL EM61 
and Mag array data and the cooperative inversion approach at YPG. 
Classifier TOI All Ordnance 

Features 
TOI Small Ordnance 
Features 

TOI Medium Ordnance 
Features 

TOI Large Ordnance 
Features 

GLRT 1Beta2/1Beta3, 
2Beta2/2Beta3 

1Beta2, 1Beta3, 2Beta3, 
3Beta1, 1Beta2/1Beta3 

2Beta3, 1Beta1/1Beta2, 
1Beta2/1Beta3 

1Beta1, 1Beta2/1Beta3, 
1Beta sum, 
2Beta1/2Beta2, 
3Beta1/3Beta2 

SVM 1Beta2/1Beta3, 2Beta1, 
2Beta sum 

2Beta3, 3Beta1, 
1Beta1/1Beta2, 
1Beta2/1Beta3, 1Beta 
sum 

2Beta2, 2Beta3, 3Beta1, 
1Beta2/1Beta3, 3Beta 
sum 

1Beta2, 1Beta3, 
1Beta2/1Beta3, 1Beta 
sum 

RVM 2Beta1/2Beta2, 
1Beta2/1Beta3,  

1Beta2, 2Beta3, 1Beta 
sum 

2Beta2, 1Beta1/1Beta2, 
1Beta2/1Beta3, 2Beta 
sum 

1Beta1, 1Beta2/1Beta3, 
1Beta sum 

KNN 1Beta2/1Beta3, 
1Beta1/1Beta2, 1Beta3, 
1Beta sum, 3Beta1, 
1Beta1, 2Beta2/2Beta3, 
3Beta3, 1Beta2, 3Beta2 

1Beta1, 1Beta3, 2Beta3, 
2Beta sum 

2Beta1, 2Beta3, 
1Beta1/1Beta2, 
1Beta2/1Beta3, 
2Beta2/2Beta3 

1Beta2, 1Beta3  

All 
features 

XBeta1, XBeta2, XBeta3, XBeta1/XBeta2, XBeta2/XBeta3, XBeta sum where "X" is 1,2 or 3 representing the 
first, second and third time gate 

 

 
Figure 6-13 ROC curves for NRL array data using the cooperative Mag/EM approach at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were all ordnance ranging from 20mm to 155mm. 
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Figure 6-14 ROC curves for NRL array data using the cooperative Mag/EM approach at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were small sized ordnance items (20mm, 40mm, 
M42, BDU-28, BDU-26). 

 
Figure 6-15 ROC curves for NRL array data using the cooperative Mag/EM approach at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were medium sized ordnance items (57mm, 
MK118, 60mm, 81mm, 2.75in). 
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Figure 6-16 ROC curves for NRL array data using the cooperative Mag/EM approach at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were large sized ordnance items (105mm, 155mm). 
 
Table 6-5 Best set of features for each of the classifiers with different TOI using the WES EM63 
data and the POB model at YPG. 
Classifier TOI All Ordnance 

Features 
TOI Small Ordnance 
Features 

TOI Medium Ordnance 
Features 

TOI Large Ordnance 
Features 

GLRT B1 B2, B2/K2, K sum B1, B2, K2, K1, B sum B2, K2, B sum, K1/K2, K 
sum 

SVM B1, B2, K2 K2, K1/K2 B1, B2, K1, K2 B1, B2/K2 
RVM B1, B2, K1, K2 B1, K2, K sum B1, B2, K sum B1, B2, K2, B sum, K 

sum 

KNN B1, B2, K2, K1 B1, K2, K1, B sum B1, B2, K2, K1 B1, K2, B2/K2 
All 
features 

B1, B2, K1, K2, B1/B2, B sum, K1/K2, K sum, B2/K2 
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Figure 6-17 ROC curves for WES EM63 data using the POB model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were all ordnance ranging from 20mm to 155mm. 
 

 
Figure 6-18 ROC curves for WES EM63 data using the POB model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were small sized ordnance items (20mm, 40mm, M42, BDU-
28, BDU-26). 
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Figure 6-19 ROC curves for WES EM63 data using the POB model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were medium sized ordnance items (57mm, MK118, 60mm, 
81mm, 2.75in). 

 
Figure 6-20 ROC curves for WES EM63 using the POB model at YPG for different classifiers 
and features selection methodologies using features of anomalies with fit errors less than 31% .  
The targets of interest were large sized ordnance items (105mm, 155mm). 
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Table 6-6 Best set of features for each of the classifiers with different TOI using the WES EM63 
data and the SEM model at YPG. 
Classifier TOI All Ordnance 

Features 
TOI Small Ordnance 
Features 

TOI Medium Ordnance 
Features 

TOI Large Ordnance 
Features 

GLRT W2 M1 W2 W2, M sum 
SVM W1, M1/M2, W sum M1, W2, M1/M2 M1, W1, W2 W2, M1/M2, W sum 
RVM W2, M1/M2, M sum M1, M1/M2 M1, W sum M2, W2, M sum 
KNN M1, M2, W2, W1/W2, W 

sum 
M1, W2, M1/M2, W sum M1, W2, W1/W2 M1, M2, W2, M sum, 

W1/W2 

All 
features 

M1, M2, W1, W2, M1/M2, M sum, W1/W2, W sum 

 

 
Figure 6-21 ROC curves for WES EM63 data using the SEM model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were all ordnance ranging from 20mm to 155mm. 
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Figure 6-22 ROC curves for WES EM63 data using the SEM model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were small sized ordnance items (20mm, 40mm, M42, BDU-
28, BDU-26). 

 
Figure 6-23 ROC curves for WES EM63 data using the SEM model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were medium sized ordnance items (57mm, MK118, 60mm, 
81mm, 2.75in). 
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Figure 6-24 ROC curves for WES EM63 data using the SEM model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were large sized ordnance items (105mm, 155mm). 
 
Table 6-7 Best set of features for each of the classifiers with different TOI using the NRL GEM-
3 array and the ellipsoidal scale model at YPG. 
Classifier TOI All Ordnance 

Features 
TOI Small Ordnance 
Features 

TOI Medium Ordnance 
Features 

TOI Large Ordnance 
Features 

GLRT A, A/B, B/C A, A/B, B/C, ABC sum B, B/C C, Scale, A/B, B/C, ABC 
sum 

SVM B/C B, A/B A, C, B/C, ABC sum A, A/B, B/C, ABC sum 
RVM A, C, MU B, MU, B/C, ABC sum B, MU, A/B A, C, ABC sum 
KNN B, C, MU, Scale, A/B B, A/B, B/C A, C A, MU, Scale, A/B, B/C 
All 
features 

A, B, C, MU, Scale, A/B, B/C, ABC sum 
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Figure 6-25 ROC curves for NRL GEM-3 array data using the ellipsoidal scale model at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were all ordnance ranging from 20mm to 155mm. 
 

 
Figure 6-26 ROC curves for NRL GEM-3 array data using the ellipsoidal scale model at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were small sized ordnance items (20mm, 40mm, 
M42, BDU-28, BDU-26). 
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Figure 6-27 ROC curves for NRL GEM-3 array data using the ellipsoidal scale model at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were medium sized ordnance items (57mm, 
MK118, 60mm, 81mm, 2.75in). 
 

 
Figure 6-28 ROC curves for NRL GEM-3 array data using the ellipsoidal scale model at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were large sized ordnance items (105mm, 155mm). 
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Table 6-8 Best set of features for each of the classifiers with different TOI using the NRL GEM-
3 array data and the ellipsoidal tau model at YPG. 
Classifier TOI All Ordnance 

Features 
TOI Small Ordnance 
Features 

TOI Medium Ordnance 
Features 

TOI Large Ordnance 
Features 

GLRT B, A/B, B/C, Tau sum Tau1, Tau2, B/C, ABC 
sum, Tau1/Tau2 

C, Tau3 A, A/B, B/C, ABC sum, 
Tau sum 

SVM Tau3, A/B, B/C, 
Tau1/Tau2, Tau2/Tau3 

B, Tau2, B/C, ABC sum C, Tau3, B/C, ABC sum, 
Tau1/Tau2 

C, Tau1, B/C, Tau1/Tau2 

RVM Tau1, Tau2, B/c A, C, Tau2, Tau2/Tau3 A, B, C, B/C C, Tau1/Tau2 
KNN B, Tau3, B/C, Tau sum A, B, C, ABC sum, 

Tau1/Tau2 
B, C, Tau1, ABC sum C, Tau1, Tau2, B/C, 

Tau1/Tau2 

All 
features 

A, B, C, Tau1, Tau2, Tau3, A/B, B/C, ABC sum, Tau1/Tau2, Tau2/Tau3, Tau sum 

 

 
Figure 6-29 ROC curves for NRL GEM-3 array data using the ellipsoidal tau model at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were all ordnance ranging from 20mm to 155mm. 
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Figure 6-30 ROC curves for NRL GEM-3 array data using the ellipsoidal tau model at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were small sized ordnance items (20mm, 40mm, 
M42, BDU-28, BDU-26). 

 
Figure 6-31 ROC curves for NRL GEM-3 array data using the ellipsoidal tau model at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were medium sized ordnance items (57mm, 
MK118, 60mm, 81mm, 2.75in). 
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Figure 6-32 ROC curves for NRL GEM-3 array data using the ellipsoidal tau model at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were large sized ordnance items (105mm, 155mm). 
 
Table 6-9 Best set of features for each of the classifiers with different TOI using the NRL GEM-
3 array data and the empirical model at YPG. 
Classifier TOI All Ordnance 

Features 
TOI Small Ordnance 
Features 

TOI Medium Ordnance 
Features 

TOI Large Ordnance 
Features 

GLRT S2, S1 amp2, a3, b2, b2/b3, S2, 
S1, a sum 

S2, S1 S2, t3, S3, a3, S sum, b3 

SVM b2, S sum, a3, S1, a 
sum 

amp2, b3, S2, S1, amp1 b2/b3, b2, b3, amp2, S2, 
S1, S sum, a2 

amp sum, S1, S sum 

RVM S sum, b2, S1, S2, S3 S sum, S1, S2 b2, S2/S3, t2 amp sum, S2, S3, amp3, 
t3 

KNN S2, b3, S1, S3, t3, b1/b2, 
S1/S2 

amp sum, t3, S2, b3, t 
sum 

S2, S1, t2/t3, b1, a1, 
S1/S2, S3, amp3, S2/S3 

amp sum, S2/S3, b3, b 
sum, amp3, t1/t2, amp2, 
S2, a2, t3 

All 
features 

amp1, amp2, amp3, b1, b2, b3, t1, t2, t3, a1, a2, a3, S1, S2, S3, amp1/amp2, amp2/amp3, amp sum, b1/b2, 
b2/b3, b sum, t1/t2, t2/t3, t sum, a1/a2, a2/a3, asum, S1/S2, S2/S3, S sum 
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Figure 6-33 ROC curves for NRL GEM-3 array data using the empirical model at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were all ordnance ranging from 20mm to 155mm. 
 

 
Figure 6-34 ROC curves for NRL GEM-3 array data using the empirical model at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were small sized ordnance items (20mm, 40mm, 
M42, BDU-28, BDU-26). 
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Figure 6-35 ROC curves for NRL GEM-3 array data using the empirical model at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were medium sized ordnance items (57mm, 
MK118, 60mm, 81mm, 2.75in). 
 

 
Figure 6-36 ROC curves for NRL GEM-3 array data using the empirical model at YPG for 
different classifiers and features selection methodologies using features of anomalies with fit 
errors less than 31% .  The targets of interest were large sized ordnance items (105mm, 155mm). 
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Table 6-10 Best set of features for each of the classifiers with different TOI using the NRL 
GEM-3 array data and the loop model at YPG. 
Classifier TOI All Ordnance 

Features 
TOI Small Ordnance 
Features 

TOI Medium Ordnance 
Features 

TOI Large Ordnance 
Features 

GLRT 270i2/270i3, 
1230q1/1230q2, 570i3, 
270q1, CohB13, 
2610i2/2610i3, 
2610q1/2610q2, 
90q1/90q2, 570i2/570i3, 
150i2 

5430q1/5430q2, 
570i2/570i2, S1, 
CohB13, 90i1, 
2610q1/2610q2, 570i2, 
11430q sum, 
150q1/150q2, MagB2, 
150i1, MagB3, 
2610i2/2610i3  

90i2/90i3, 270i2/270i3, 
150q2/150q3, 
570i2/570i3, 1230q2, 
570q sum, 
1230q2/1230q3, 90q 
sum, 570i1/570i2, 
5430i3, 150i sum, S1, 
5430q1, 1230i2/1230i3, 
90q3, 570q1/570q2, 270i 
sum, 5430i sum, 2610i2, 
90i2 

1230q sum, 90i2/90i3, 
MagB2, 150i1/150i2, 
CohB12/CohB23, 
570q1/570q2, 1230q3, 
20010i1, 
20010i2/20010i3, 90q 
sum, 1230i1/1230i2, 
2610i2/2610i3, 
2610q2/2610q3, 
570i2/570i3, 270i1/270i2, 
270i2/270i3 

SVM 150i2/150i3, 
1230q1/1230q2, 
1230q2/1230q3 

150i1, 270i2/270i3, 
270i2, 90i1, S2, 
150i1/150i2, CohB23, 
270q1/270q2 

570i2/570i3, 150i2, 90i2, 
150i1, 90i sum 

90i2/90i3, 20010i sum, 
2610i2/2610i3, CohB13, 
20010i2/20010i3, 
90q1/90q2, 11430q3, 
11430q1, MagB3, 150q 
sum, 570q2/570q3 

RVM CohB12, 570i sum, 
570q1, 1230q sum, 270q 
sum, 90i1, 570q3, 150q 
sum, 5430q3, 270i3, S 
sum, allq3 sum,11430q3, 
90i sum, allq1 sum, 
90i1/90i2, 90q1, 5430q2, 
150i sum  

11430i1, 2610q1, 
1230i1, MagB2, 570q 
sum, 5430i1/5430i2, 
150q sum, 11430q2, 
5430i1, 570q2, 
570q2/570q3, allq2 sum, 
1230q1, S1 

CohB12, 1230i sum, 
270i1, 570q1, 150q3 

11430i sum, 150i2, 
1230i1, 270i sum, 90i 
sum, CohB23, 270i1, S2, 
MagB1, 570i2, 570q1 

KNN 2610i2, CohB12, 570i3, 
270q1, 150i1/150i2, 
2610q2, 90i2, 1230i1, 
150q1 

5430i1, 570q2/570q3, 
5430i2, 1230i1, 2610q2, 
5430q3, 5430q2/5430q3, 
CohB12/CohB23, 
2610q1, 570i sum 

270i1/270i2, 1230i1, 90q 
sum, CohB12, 270i1, 90i 
sum, 2610q sum, 150i3, 
90i2, 90q1, 90i1 

90q sum, 150i1, S3, 
270i1 

All 
features 

Xi1, Xi2, Xi3, Xq1, Xq2, Xq3, CohB12, CohB23, CohB13, MagB1, MagB2, MagB3,S1, S2, S3, S1/S2, S2/S3, 
S sum, CohB12/CohB23, CohB12_B23 sum, Xi1/Xi2, Xi2/Xi3, Xi sum, Xq1/Xq2, Xq2/Xq3, Xq sum, Allq sum 
where "X" is 90, 150, 270, 570,1230,2610,5430,11430 or 20010Hz 
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Figure 6-37 ROC curves for NRL GEM-3 array data using the loop model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were all ordnance ranging from 20mm to 155mm. 
 

 
Figure 6-38 ROC curves for NRL GEM-3 array data using the loop model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were small sized ordnance items (20mm, 40mm, M42, BDU-
28, BDU-26). 
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Figure 6-39 ROC curves for NRL GEM-3 array data using the loop model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were medium sized ordnance items (57mm, MK118, 60mm, 
81mm, 2.75in). 
 

 
Figure 6-40 ROC curves for NRL GEM-3 array data using the loop model at YPG for different 
classifiers and features selection methodologies using features of anomalies with fit errors less 
than 31% .  The targets of interest were large sized ordnance items (105mm, 155mm). 
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